Skip to content

yunhao-tech/Course_project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

76 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Courses homeworks & projects

Course Homeworks & Projects Content
NLP (ENSAE) Project and paper Intent classification in Sequential labelling tasks, using contextual embeddings
Advanced Machine learning (ENSAE) Final project Understand and Fine-tune the ViT-Base/32 CLIP model
Data camp (IPP) Data challenge Solar wind classification based on data measured by in-situ spacecraft
Design of Data challenge Precipitation forecast: Based on 18 consecutive satellite radar frames, to predict the next 18 frames
Deep learning II (IPP) Final project: RBM&DBN Implement and train RBM (Restricted Boltzmann machine) and DBN (Deep belief network) from scratch
Altegrad (MVA) Lab1 self-attention and HAN (Hierarchical Attention Network) architecture
Lab2 Transfer learning on transformer architecture
Lab3 Using Fairseq and HuggingFace transformers to finetune pretrained language models
Lab4 Spectral Clustering for graphs; Graph Classification using Graph Kernels
Lab5 DeepWalk algorithm & node embedding & Graph neural network (GNN)
Lab6 Graph attention network (GAT) & Graph Classification with deep learning
Lab7 DeepSets model & protein classification with GNN
Kaggle challenge Kaggle challenge: use sequential and structural information to classify protein into 18 classes.
Causal Inference (IPP) Lectures & Labs Notebooks in lectures and labs. See the summary in Readme
Final project Reproduction of paper: Counterfactual Fairness to study in machine learning the fairness using causal inference
Bootstrap (ENSAE) TD1 Application of Jackknife to estimate the asymptotic variance (Ex.1) and bias (Ex.2) of estimators
TD2 Application of Bootstrap to estimate the bias (Ex.2) and variance (Ex.1, possibly to use Boostrap of Boostrap) of an estimator/statistic
TD3 The exam of last year
Sequential Monte-Carlo (ENSAE) Final project Employ the SMC methods in Dropout layer of neural network in adaptation stage, in order to replace the fine-tuning
Computer Vision (Telecom) Lab1 self-attention and HAN (Hierarchical Attention Network) architecture
Lab2 Feature detection (Harris corner detection) & Motion estimation (block matching) & Segmentation (algorithm of Otsu + region-growing based algorithm)
Data streaming (IPP) Lab1 Discovery of River: like sklearn, but it focus on online machine learning
Lab2 Using Docker and Kafka to analyse streaming tweets
Final project: Continual GNN Refactor the original codes in a paper studying streaming GNN via continual learning
Statistic Bayesian (ENSAE) DM1 Application of MCMC Gibbs sampler to inference parameters based on 'a proteriori' probability
Final project Using Gibbs sampling and DMC-IS(direct monte carlo with importance sampling) to reproduce some results in this paper
Practical Machine learning (IPP) Session 1 analyse on several unsupervised machine learning methods: K-means, GMM, PCA, t-SNE
Session 2 reguralised regression, variable selection, nonlinear regression, on a dataset from the Brain Computer Interface competition
Session 3 comparison between Bayesian decision, linear and nonlinear classification, on MNIST dataset and another one about diabetes
Deep learning (IPP) Lab 1 implement MLP from scratch
Lab 2 implement MLP using pytorch
Lab 3 RNN (Many-to-one)
Lab 4 a simple language model
Lab 5 build CNN for image recognition, using Pytorch
Lab 5 visualisation of CNN: Deep Dream algorithm; Adversarial examples
MAP566 Statistics in Action (X-3A) Homework 1 Hypothesis testing
Homework 1 implement MLP using pytorch
TP3 Polynomial regression model
TP4 Nonlinear regression model
TP5 linear mixed model
TP6 non linear mixed model
TP7 mixture models
TP8 Graph Clustering: Spectral and hierarchical methods
TP9 Graph Clustering: Stochastic Blockmodels
MAP556 Monte Carlo Methods (X-3A) TP1 Simulation of random variables + Law of large numbers + Central limit theorem
TP2 Serveral methods of variance reduction: control variates, antithetic sampling, stratification
TP3 Variance reduction through importance sampling
TP5 Using Empirical Regression to approximate conditional expectation (in a context of finance)
TP6 Generative Adversarial Network (GAN)
TP8 Simulate processes of Brownian motion (eg. process of Ornstein-Uhlenbeck) and their Euler scheme
TP9 Multi-level Monte-Carlo method (MLMC)
Challenge1 simulate E(f(G)), f is reasonably regular
Challenge2 play Angry Bird! Try to give a control on velocity to the bird facing a random wind
MAP553 Machine learning (X) TP1 implement several optimization algorithms: GD, AGD, CGD, SGD, SAG, SVRG
Project a classic dataset of tree cover type classification, using auto machine learning, 2nd in Kaggle competition
Reinforcement learning (X-2A) Lab3 Dynamic Programming - Value Iteration
Lab4 Dynamic Programming - policy iteration
Lab5 Temporal Difference
Lab6 Q table - SARSA and Q Learning
Lab7 Policy Gradient
INF580 Large scale mathematical optimization (X-3A) Project combine random projection and linear programming. Retrieve solutions from projected problem and dual projected problem, compute primal solution. Compare their feasibility error and compute time
MAP433 statistiques (X-2A) TP1 Estimation parametrique. Loi de Poisson pour modéliser le nombre de buts marqués par une équipe de football
TP2 Test de Cramer-von Mises
TP3 Transformation de stabilisation de la variance
Homework1 Estimation coefficients and interpretation (linear regression)
Homework2 a test asymptotic on regression coefficients
Homework3 Classification by KNN
MAP432 Markov & martingale (X-2A) Project L'algorithme du recuit simulé, pour résoudre des problèmes d'optimisation non convexe. On s'intéresse ici à une application au problème du voyageur de commerce
MAP435 optimisation (X-2A) optimisation sans contrainte Algorithme de gradient à pas fixe
Algorithme du gradient pas optimal (le cas de fonction quadratic)
Algorithme de Nesterov (fonctions convexes)
Algorithme de Nesterov (fonctions fortement convexes)
Algorithme du gradient conjugué
Algorithme de Newton
Analyse de vitesse de convergence et comparer les algos
Quelques contre-exemples
optimisation avec contraintes Algorithme du gradient projeté
Algorithme d'Uzawa
Méthode de pénalisation
Algorithme du Lagrangien augmenté

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published