-
Notifications
You must be signed in to change notification settings - Fork 3k
[recipe] feat: @register_policy_loss("geo_mean"); Geometric-Mean Policy Optimization #2795
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Code Review
This pull request introduces Geometric-Mean Policy Optimization (GMPO) by adding a new policy loss function. The implementation is a good step towards incorporating this new algorithm. However, I've identified a critical issue related to potential division-by-zero errors that could cause training instability, and another high-severity issue concerning redundant code that impacts maintainability. Addressing these points will make the implementation more robust and cleaner.
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
|
Please fix pre-commit according to readme and let's merge it |
…cy Optimization (volcengine#2795) ### What does this PR do? > This is the official implementaion of paper [***Geometric-Mean Policy Optimization***](https://arxiv.org/abs/2507.20673). ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > The code has trained for 100 iterations, and is still running. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. A new policy loss function has been added into "verl/trainer/ppo/core_algos.py" ```python @register_policy_loss("geo_mean") def compute_policy_loss_geo_mean( old_log_prob: torch.Tensor, log_prob: torch.Tensor, advantages: torch.Tensor, response_mask: torch.Tensor, loss_agg_mode: str = "token-mean", config: Optional[DictConfig | AlgoConfig] = None, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch. Tensor]: ... ``` We also added directory "examples/gmpo_trainer" for quick start. ### Design & Code Changes > see above ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [x] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).) --------- Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
…cy Optimization (volcengine#2795) ### What does this PR do? > This is the official implementaion of paper [***Geometric-Mean Policy Optimization***](https://arxiv.org/abs/2507.20673). ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > The code has trained for 100 iterations, and is still running. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. A new policy loss function has been added into "verl/trainer/ppo/core_algos.py" ```python @register_policy_loss("geo_mean") def compute_policy_loss_geo_mean( old_log_prob: torch.Tensor, log_prob: torch.Tensor, advantages: torch.Tensor, response_mask: torch.Tensor, loss_agg_mode: str = "token-mean", config: Optional[DictConfig | AlgoConfig] = None, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch. Tensor]: ... ``` We also added directory "examples/gmpo_trainer" for quick start. ### Design & Code Changes > see above ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [x] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).) --------- Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
…cy Optimization (volcengine#2795) ### What does this PR do? > This is the official implementaion of paper [***Geometric-Mean Policy Optimization***](https://arxiv.org/abs/2507.20673). ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > The code has trained for 100 iterations, and is still running. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. A new policy loss function has been added into "verl/trainer/ppo/core_algos.py" ```python @register_policy_loss("geo_mean") def compute_policy_loss_geo_mean( old_log_prob: torch.Tensor, log_prob: torch.Tensor, advantages: torch.Tensor, response_mask: torch.Tensor, loss_agg_mode: str = "token-mean", config: Optional[DictConfig | AlgoConfig] = None, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch. Tensor]: ... ``` We also added directory "examples/gmpo_trainer" for quick start. ### Design & Code Changes > see above ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [x] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).) --------- Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
…cy Optimization (volcengine#2795) ### What does this PR do? > This is the official implementaion of paper [***Geometric-Mean Policy Optimization***](https://arxiv.org/abs/2507.20673). ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > The code has trained for 100 iterations, and is still running. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. A new policy loss function has been added into "verl/trainer/ppo/core_algos.py" ```python @register_policy_loss("geo_mean") def compute_policy_loss_geo_mean( old_log_prob: torch.Tensor, log_prob: torch.Tensor, advantages: torch.Tensor, response_mask: torch.Tensor, loss_agg_mode: str = "token-mean", config: Optional[DictConfig | AlgoConfig] = None, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch. Tensor]: ... ``` We also added directory "examples/gmpo_trainer" for quick start. ### Design & Code Changes > see above ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [x] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).) --------- Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
…cy Optimization (volcengine#2795) ### What does this PR do? > This is the official implementaion of paper [***Geometric-Mean Policy Optimization***](https://arxiv.org/abs/2507.20673). ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > The code has trained for 100 iterations, and is still running. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. A new policy loss function has been added into "verl/trainer/ppo/core_algos.py" ```python @register_policy_loss("geo_mean") def compute_policy_loss_geo_mean( old_log_prob: torch.Tensor, log_prob: torch.Tensor, advantages: torch.Tensor, response_mask: torch.Tensor, loss_agg_mode: str = "token-mean", config: Optional[DictConfig | AlgoConfig] = None, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch. Tensor]: ... ``` We also added directory "examples/gmpo_trainer" for quick start. ### Design & Code Changes > see above ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [x] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).) --------- Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
What does this PR do?
Checklist Before Starting
[{modules}] {type}: {description}(This will be checked by the CI){modules}includefsdp,megatron,sglang,vllm,rollout,trainer,ci,training_utils,recipe,hardware,deployment,ray,worker,single_controller,misc,perf,model,algo,env,tool,ckpt,doc,data,like[megatron, fsdp, doc]{type}is infeat,fix,refactor,chore,test[BREAKING]to the beginning of the title.[BREAKING][fsdp, megatron] feat: dynamic batchingTest
API and Usage Example
A new policy loss function has been added into "verl/trainer/ppo/core_algos.py"
We also added directory "examples/gmpo_trainer" for quick start.
Design & Code Changes
Checklist Before Submitting
Important
Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review.
pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=alwaysci-requestchannel in theverlSlack workspace. (If not accessible, please try the Feishu group (飞书群).)