Skip to content

runpod/ai-sdk-provider

Repository files navigation

Runpod AI SDK Provider

Runpod AI SDK Provider banner

The Runpod provider for the AI SDK contains language model and image generation support for Runpod's public endpoints.

Setup

The Runpod provider is available in the @runpod/ai-sdk-provider module. You can install it with:

# npm
npm install @runpod/ai-sdk-provider

# pnpm
pnpm add @runpod/ai-sdk-provider

# yarn
yarn add @runpod/ai-sdk-provider

# bun
bun add @runpod/ai-sdk-provider

Provider Instance

You can import the default provider instance runpod from @runpod/ai-sdk-provider:

import { runpod } from '@runpod/ai-sdk-provider';

If you need a customized setup, you can import createRunpod and create a provider instance with your settings:

import { createRunpod } from '@runpod/ai-sdk-provider';

const runpod = createRunpod({
  apiKey: 'your-api-key', // optional, defaults to RUNPOD_API_KEY environment variable
  baseURL: 'custom-url', // optional, for custom endpoints
  headers: {
    /* custom headers */
  }, // optional
});

You can use the following optional settings to customize the Runpod provider instance:

  • baseURL string

    Use a different URL prefix for API calls, e.g. to use proxy servers or custom endpoints. Supports vLLM deployments, SGLang servers, and any OpenAI-compatible API. The default prefix is https://api.runpod.ai/v2.

  • apiKey string

    API key that is being sent using the Authorization header. It defaults to the RUNPOD_API_KEY environment variable. You can obtain your api key from the Runpod Console under "API Keys".

  • headers Record<string,string>

    Custom headers to include in the requests.

  • fetch (input: RequestInfo, init?: RequestInit) => Promise<Response>

    Custom fetch implementation. You can use it as a middleware to intercept requests, or to provide a custom fetch implementation for e.g. testing.

Language Models

You can create language models using the provider instance. The first argument is the model ID:

import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';

const { text } = await generateText({
  model: runpod('qwen/qwen3-32b-awq'),
  prompt: 'What is the capital of Germany?',
});

Returns:

  • text - Generated text string
  • finishReason - Why generation stopped ('stop', 'length', etc.)
  • usage - Token usage information (prompt, completion, total tokens)

Streaming

import { runpod } from '@runpod/ai-sdk-provider';
import { streamText } from 'ai';

const { textStream } = await streamText({
  model: runpod('qwen/qwen3-32b-awq'),
  prompt:
    'Write a short poem about artificial intelligence in exactly 4 lines.',
  temperature: 0.7,
});

for await (const delta of textStream) {
  process.stdout.write(delta);
}

Examples

Check out our examples for more code snippets on how to use all the different models.

Supported Models

Model ID Description Streaming Object Generation Tool Usage Reasoning Notes
qwen/qwen3-32b-awq 32B parameter multilingual model with strong reasoning capabilities Standard reasoning events
openai/gpt-oss-120b 120B parameter open-source GPT model Standard reasoning events
deepcogito/cogito-671b-v2.1-fp8 671B parameter Cogito model with FP8 quantization Standard reasoning events

Note: This list is not complete. For a full list of all available models, see the Runpod Public Endpoint Reference.

Chat Conversations

const { text } = await generateText({
  model: runpod('qwen/qwen3-32b-awq'),
  messages: [
    { role: 'system', content: 'You are a helpful assistant.' },
    { role: 'user', content: 'What is the capital of France?' },
  ],
});

Tool Calling

import { generateText, tool } from 'ai';
import { z } from 'zod';

const { text, toolCalls } = await generateText({
  model: runpod('openai/gpt-oss-120b'),
  prompt: 'What is the weather like in San Francisco?',
  tools: {
    getWeather: tool({
      description: 'Get weather information for a city',
      inputSchema: z.object({
        city: z.string().describe('The city name'),
      }),
      execute: async ({ city }) => {
        return `The weather in ${city} is sunny.`;
      },
    }),
  },
});

Additional Returns:

  • toolCalls - Array of tool calls made by the model
  • toolResults - Results from executed tools

Structured output

Using generateObject to enforce structured ouput is not supported by two models that are part of this provider.

You can still return structured data by instructing the model to return JSON and validating it yourself.

import { runpod } from '@runpod/ai-sdk-provider';
import { generateText } from 'ai';
import { z } from 'zod';

const RecipeSchema = z.object({
  name: z.string(),
  ingredients: z.array(z.string()),
  steps: z.array(z.string()),
});

const { text } = await generateText({
  model: runpod('qwen/qwen3-32b-awq'),
  messages: [
    {
      role: 'system',
      content:
        'return ONLY valid JSON matching { name: string; ingredients: string[]; steps: string[] }',
    },
    { role: 'user', content: 'generate a lasagna recipe.' },
  ],
  temperature: 0,
});

const parsed = JSON.parse(text);
const result = RecipeSchema.safeParse(parsed);

if (!result.success) {
  // handle invalid JSON shape
}

console.log(result.success ? result.data : parsed);

Image Models

With image models you can:

  • Text-to-image: generate a new image from a text prompt.
  • Edit image: transform an existing image by providing reference image(s).

All examples use the AI SDK's generateImage and runpod.image(modelId).

Text-to-Image

import { runpod } from '@runpod/ai-sdk-provider';
import { generateImage } from 'ai';
import { writeFileSync } from 'fs';

const { image } = await generateImage({
  model: runpod.image('pruna/p-image-t2i'),
  prompt: 'A serene mountain landscape at sunset',
  aspectRatio: '4:3',
});

writeFileSync('image.png', image.uint8Array);

Returns:

  • image.uint8Array - Binary image data (efficient for processing/saving)
  • image.base64 - Base64 encoded string (for web display)
  • image.mediaType - MIME type ('image/jpeg' or 'image/png')
  • warnings - Array of any warnings about unsupported parameters

Edit Image

For editing, pass reference images via prompt.images (recommended). The AI SDK normalizes prompt.images into files for the provider call.

Single reference image (1 input image)

import { runpod } from '@runpod/ai-sdk-provider';
import { generateImage } from 'ai';

const { image } = await generateImage({
  model: runpod.image('pruna/p-image-edit'),
  prompt: {
    text: 'Virtual staging: add modern Scandinavian furniture: a gray sofa, wooden coffee table, potted plants, and warm lighting',
    images: ['https://image.runpod.ai/demo/empty-room.png'],
  },
  aspectRatio: '16:9',
});

Multiple reference images (4 input images)

Note: Prior to v1.0.0, images were passed via providerOptions.runpod.image / providerOptions.runpod.images. This still works but prompt.images is now recommended.

import { runpod } from '@runpod/ai-sdk-provider';
import { generateImage } from 'ai';

const { image } = await generateImage({
  model: runpod.image('google/nano-banana-pro-edit'),
  prompt: {
    text: 'Combine these four robot musicians into an epic band photo on a concert stage with dramatic lighting',
    images: [
      'https://image.runpod.ai/demo/robot-drummer.png',
      'https://image.runpod.ai/demo/robot-guitarist.png',
      'https://image.runpod.ai/demo/robot-bassist.png',
      'https://image.runpod.ai/demo/robot-singer.png',
    ],
  },
});

Examples

Check out our examples for more code snippets on how to use all the different models.

Supported Models

Model ID Type
pruna/p-image-t2i t2i
pruna/p-image-edit edit
google/nano-banana-pro-edit edit
bytedance/seedream-3.0 t2i
bytedance/seedream-4.0 t2i
bytedance/seedream-4.0-edit edit
qwen/qwen-image t2i
qwen/qwen-image-edit edit
nano-banana-edit edit
black-forest-labs/flux-1-schnell t2i
black-forest-labs/flux-1-dev t2i
black-forest-labs/flux-1-kontext-dev edit

For the full list of models, see the Runpod Public Endpoint Reference.

Provider Options

Additional options through providerOptions.runpod (supported options depend on the model):

Option Type Default Description
negative_prompt string "" What to avoid in the image (model-dependent)
enable_safety_checker boolean true Content safety filtering (model-dependent)
disable_safety_checker boolean false Disable safety checker (Pruna)
aspect_ratio string - Model-specific aspect ratio (Pruna: supports custom)
image string - Legacy: Single input image URL/base64 (use prompt.images)
images string[] - Legacy: Multiple input images (use prompt.images)
resolution string "1k" Output resolution: 1k, 2k, 4k (Nano Banana Pro)
width / height number - Custom dimensions (Pruna t2i, 256-1440; multiples of 16)
num_inference_steps number Auto Denoising steps (model-dependent)
guidance number Auto Prompt adherence strength (model-dependent)
output_format string "png" Output format: png, jpg, jpeg, webp (model-dependent)
maxPollAttempts number 60 Max polling attempts
pollIntervalMillis number 5000 Polling interval (ms)

Example (providerOptions):

const { image } = await generateImage({
  model: runpod.image('bytedance/seedream-3.0'),
  prompt: 'A sunset over mountains',
  size: '1328x1328',
  seed: 42,
  providerOptions: {
    runpod: {
      negative_prompt: 'blurry, low quality',
      enable_safety_checker: true,
      maxPollAttempts: 30,
      pollIntervalMillis: 4000,
    },
  },
});

Model-specific Notes

Pruna (p-image)

Supported models: pruna/p-image-t2i, pruna/p-image-edit

  • Text-to-image: supports standard aspectRatio values; for custom dimensions, set providerOptions.runpod.aspect_ratio = 'custom' and provide width/height.
  • Edit image: supports 1–5 input images via prompt.images (recommended) or files.

Example: Custom Dimensions (t2i)

const { image } = await generateImage({
  model: runpod.image('pruna/p-image-t2i'),
  prompt: 'A robot',
  providerOptions: {
    runpod: {
      aspect_ratio: 'custom',
      width: 512,
      height: 768,
    },
  },
});

Google (Nano Banana Pro)

Supported model: google/nano-banana-pro-edit

Parameter Supported Values Notes
aspectRatio 1:1, 16:9, 9:16, 4:3, 3:4, 3:2, 2:3, 21:9, 9:21 Standard AI SDK parameter
resolution 1k, 2k, 4k Output resolution quality
output_format jpeg, png, webp Output image format
prompt.images string[] Recommended. Input image(s) to edit.
files ImageModelV3File[] Alternative (lower-level).
providerOptions.runpod.images string[] Legacy. Input image(s) to edit.

Speech Models

Generate speech using the AI SDK's generateSpeech and runpod.speech(...):

import { runpod } from '@runpod/ai-sdk-provider';
import { generateSpeech } from 'ai';

const result = await generateSpeech({
  model: runpod.speech('resembleai/chatterbox-turbo'),
  text: 'Hello from Runpod.',
});

// Save to filesystem:
import { writeFileSync } from 'fs';
writeFileSync('speech.wav', result.audio.uint8Array);

Returns:

  • result.audio (GeneratedAudioFile)
    • result.audio.uint8Array (binary audio)
    • result.audio.base64 (base64-encoded audio)
    • result.audio.mediaType (e.g. audio/wav)
    • result.audio.format (e.g. wav)
  • result.warnings (e.g. unsupported parameters)
  • result.responses (telemetry/debug metadata)
  • result.providerMetadata.runpod
    • audioUrl (public URL to the generated audio)
    • cost (if available)

Examples

Check out our examples for more code snippets on how to use all the different models.

Supported Models

  • resembleai/chatterbox-turbo

resembleai/chatterbox-turbo

Parameters

Parameter Type Default Description
text string - Required. The text to convert to speech.
voice string "lucy" Built-in voice name (see list below).

Provider Options

Use providerOptions.runpod for model-specific parameters:

Option Type Default Description
voice_url string - URL to audio file (5–10s) for voice cloning
voiceUrl string - Alias for voice_url

Note: If voice_url is provided, the built-in voice is ignored.

Note: This speech endpoint currently returns WAV only; outputFormat is ignored.

Voices

voice selects one of the built-in voices (default: lucy):

[
  'aaron',
  'abigail',
  'anaya',
  'andy',
  'archer',
  'brian',
  'chloe',
  'dylan',
  'emmanuel',
  'ethan',
  'evelyn',
  'gavin',
  'gordon',
  'ivan',
  'laura',
  'lucy',
  'madison',
  'marisol',
  'meera',
  'walter',
];

Voice cloning (via URL)

Use providerOptions.runpod.voice_url (or voiceUrl) to clone a voice from a short reference audio (5–10s):

const result = await generateSpeech({
  model: runpod.speech('resembleai/chatterbox-turbo'),
  text: 'Hello!',
  providerOptions: {
    runpod: {
      voice_url: 'https://example.com/voice.wav',
    },
  },
});

Paralinguistic Tags

Include these tags inline with your text to trigger realistic vocal expressions:

Tag Effect
[clear throat] Throat clearing
[sigh] Sighing
[sush] Shushing
[cough] Coughing
[groan] Groaning
[sniff] Sniffing
[gasp] Gasping
[chuckle] Chuckling
[laugh] Laughing
const result = await generateSpeech({
  model: runpod.speech('resembleai/chatterbox-turbo'),
  text: `[sigh] I can't believe it worked! [laugh] This is amazing.`,
  voice: 'lucy',
});

About Runpod

Runpod is the foundation for developers to build, deploy, and scale custom AI systems.

Beyond some of the public endpoints you've seen above (+ more generative media APIs), Runpod offers private serverless endpoints / pods / instant clusters, so that you can train, fine-tune or run any open-source or private model on your terms.

About

A custom provider for the Vercel AI SDK

Resources

License

Contributing

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •