Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -927,6 +927,40 @@ def _mean(self, node: fx.Node) -> relax.Var:
keepdim = args[2] if len(node.args) > 2 else node.kwargs.get("keepdim", False)
return self.block_builder.emit(relax.op.mean(x, dim, keepdims=keepdim))

def _norm(self, node: fx.Node) -> relax.Var:
data = self.env[node.args[0]]
dtype = data.struct_info.dtype
order = node.args[1] if len(node.args) > 1 else node.kwargs.get("p", 2)
axis = node.args[2] if len(node.args) > 2 else None
keepdims = node.args[3] if len(node.args) > 3 else False

if order == float("inf"):
return self.block_builder.emit(
relax.op.max(relax.op.abs(data), axis=axis, keepdims=keepdims)
)
elif order == float("-inf"):
return self.block_builder.emit(
relax.op.min(relax.op.abs(data), axis=axis, keepdims=keepdims)
)
# frobenius_norm
elif order == "fro":
return self.block_builder.emit(
relax.op.sqrt(
relax.op.sum(relax.op.multiply(data, data), axis=axis, keepdims=keepdims),
)
)
else:
reci_order = relax.const(1 / order, dtype=dtype)
order = relax.const(order, dtype=dtype)
return self.block_builder.emit(
relax.op.power(
relax.op.sum(
relax.op.power(relax.op.abs(data), order), axis=axis, keepdims=keepdims
),
reci_order,
)
)

def _prod(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
Expand Down
1 change: 1 addition & 0 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -728,6 +728,7 @@ def create_convert_map(
"lerp": self._lerp,
# statistical
"mean": self._mean,
"norm": self._norm,
"prod": self._prod,
"std": self._std,
"sum": self._sum,
Expand Down
129 changes: 129 additions & 0 deletions tests/python/relax/test_frontend_from_fx.py
Original file line number Diff line number Diff line change
Expand Up @@ -4513,5 +4513,134 @@ def main(
verify_model(Narrow(), [([5, 3], "float32")], {}, Expected)


def test_norm():

input_info = [([1, 3, 5, 3], "float32")]

class Norm(Module):
def __init__(self, p, dim=None, keepdim=False):
super().__init__()
self.p = p
self.dim = dim
self.keepdim = keepdim

def forward(self, x):
return torch.norm(x, p=self.p, dim=self.dim, keepdim=self.keepdim)

@tvm.script.ir_module
class Expected1:
@R.function
def main(
inp_0: R.Tensor((1, 3, 5, 3), dtype="float32"),
) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((), dtype="float32") = R.max(R.abs(inp_0), axis=None, keepdims=False)
gv: R.Tensor((), dtype="float32") = lv
R.output(gv)
return gv

@tvm.script.ir_module
class Expected2:
@R.function
def main(
inp_0: R.Tensor((1, 3, 5, 3), dtype="float32"),
) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((), dtype="float32") = R.min(R.abs(inp_0), axis=None, keepdims=False)
gv: R.Tensor((), dtype="float32") = lv
R.output(gv)
return gv

@tvm.script.ir_module
class Expected3:
@R.function
def main(
inp_0: R.Tensor((1, 3, 5, 3), dtype="float32"),
) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((1, 3, 5, 3), dtype="float32") = R.abs(inp_0)
lv1: R.Tensor((1, 3, 5, 3), dtype="float32") = R.power(lv, R.const(2, "float32"))
lv2: R.Tensor((), dtype="float32") = R.sum(lv1, axis=None, keepdims=False)
lv3: R.Tensor((), dtype="float32") = R.power(lv2, R.const(0.5, "float32"))
gv: R.Tensor((), dtype="float32") = lv3
R.output(gv)
return gv

@tvm.script.ir_module
class Expected4:
@R.function
def main(
inp_0: R.Tensor((1, 3, 5, 3), dtype="float32"),
) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((1, 3, 5, 3), dtype="float32") = R.abs(inp_0)
lv1: R.Tensor((1, 3, 5, 3), dtype="float32") = R.power(lv, R.const(1.0, "float32"))
lv2: R.Tensor((), dtype="float32") = R.sum(lv1, axis=None, keepdims=False)
lv3: R.Tensor((), dtype="float32") = R.power(lv2, R.const(1.0, "float32"))
gv: R.Tensor((), dtype="float32") = lv3
R.output(gv)
return gv

@tvm.script.ir_module
class Expected5:
@R.function
def main(
inp_0: R.Tensor((1, 3, 5, 3), dtype="float32"),
) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((1, 3, 5, 3), dtype="float32") = R.abs(inp_0)
lv1: R.Tensor((1, 3, 5, 3), dtype="float32") = R.power(lv, R.const(-4, "float32"))
lv2: R.Tensor((), dtype="float32") = R.sum(lv1, axis=None, keepdims=False)
lv3: R.Tensor((), dtype="float32") = R.power(lv2, R.const(-0.25, "float32"))
gv: R.Tensor((), dtype="float32") = lv3
R.output(gv)
return gv

@tvm.script.ir_module
class Expected6:
@R.function
def main(
inp_0: R.Tensor((1, 3, 5, 3), dtype="float32"),
) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((1, 3, 5, 3), dtype="float32") = R.abs(inp_0)
lv1: R.Tensor((1, 3, 5, 3), dtype="float32") = R.power(lv, R.const(0.5, "float32"))
lv2: R.Tensor((), dtype="float32") = R.sum(lv1, axis=None, keepdims=False)
lv3: R.Tensor((), dtype="float32") = R.power(lv2, R.const(2, "float32"))
gv: R.Tensor((), dtype="float32") = lv3
R.output(gv)
return gv

@tvm.script.ir_module
class Expected7:
@R.function
def main(
inp_0: R.Tensor((1, 3, 5, 3), dtype="float32"),
) -> R.Tensor((), dtype="float32"):
with R.dataflow():
lv: R.Tensor((1, 3, 5, 3), dtype="float32") = R.multiply(inp_0, inp_0)
lv1: R.Tensor((), dtype="float32") = R.sum(lv, axis=None, keepdims=False)
lv2: R.Tensor((), dtype="float32") = R.sqrt(lv1)
gv: R.Tensor((), dtype="float32") = lv2
R.output(gv)
return gv

norms = [
(float("inf"), None, False),
(float("-inf"), None, False),
(float(2), None, False),
(float(1.0), None, False),
(float(-4), None, True),
(float(0.5), None, True),
("fro", None, False),
]

for norm, expected in zip(
norms, [Expected1, Expected2, Expected3, Expected4, Expected5, Expected6, Expected7]
):
p, dim, keepdim = norm
verify_model(Norm(p, dim=dim, keepdim=keepdim), input_info, {}, expected)


if __name__ == "__main__":
tvm.testing.main()