Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 27 additions & 2 deletions src/relay/op/nn/convolution.cc
Original file line number Diff line number Diff line change
Expand Up @@ -460,8 +460,33 @@ bool Conv3DRel(const Array<Type>& types, int num_inputs, const Attrs& attrs,
if (param->kernel_size.defined() && param->channels.defined()) {
ICHECK_EQ(param->kernel_size.size(), 3);
ICHECK_EQ(param->dilation.size(), 3);
Array<IndexExpr> wshape({param->channels, indexdiv(dshape_ncdhw[1], param->groups),
param->kernel_size[0], param->kernel_size[1], param->kernel_size[2]});

bool is_depthwise = false;
if (param->groups > 1) {
if (!(weight && weight->shape.defined())) {
reporter->GetDiagCtx().Emit(
Diagnostic::Error(reporter->GetSpan())
<< "Weight shape must be specified when groups is greater than 1.");
return false;
}

Array<IndexExpr> wshape_oidhw = trans_kernel_layout.ForwardShape(weight->shape);
if (tvm::tir::ExprDeepEqual()(param->groups, dshape_ncdhw[1]) &&
tvm::tir::ExprDeepEqual()(param->groups, wshape_oidhw[0])) {
is_depthwise = true;
}
}

Array<IndexExpr> wshape;
if (is_depthwise) {
auto channel_multiplier = indexdiv(param->channels, dshape_ncdhw[1]);
wshape = {dshape_ncdhw[1], channel_multiplier, param->kernel_size[0], param->kernel_size[1],
param->kernel_size[2]};
} else {
wshape = {param->channels, indexdiv(dshape_ncdhw[1], param->groups), param->kernel_size[0],
param->kernel_size[1], param->kernel_size[2]};
}

wshape = trans_kernel_layout.BackwardShape(wshape);
channels = param->channels;
dilated_ksize_z = 1 + (param->kernel_size[0] - 1) * param->dilation[0];
Expand Down
24 changes: 24 additions & 0 deletions tests/python/relay/test_op_level2.py
Original file line number Diff line number Diff line change
Expand Up @@ -823,6 +823,30 @@ def test_conv3d_transpose_ncdhw_run():
tvm.testing.assert_allclose(op_res1.numpy(), ref_res, rtol=1e-5, atol=1e-5)


def test_compile_depthwise_conv3d():
dshape = [1, 16, 10, 10, 10]
wshape = [16, 2, 1, 1, 1]
params = {}
data = relay.var("data", shape=dshape, dtype="float32")
kernel = relay.const(tvm.nd.array(np.ones(shape=wshape).astype(dtype="float32")))
mod = tvm.IRModule()
res = relay.nn.conv3d(
data,
kernel,
kernel_size=[1, 1, 1],
padding=[0] * 3,
channels=32,
groups=16,
data_layout="NCDHW",
kernel_layout="OIDHW",
)
func = relay.Function([data], res)
mod = tvm.IRModule.from_expr(func)

target = "llvm"
_ = relay.build(mod, tvm.target.Target(target, host=target))


@tvm.testing.uses_gpu
def test_conv2d_transpose_infer_type():
# symbolic in batch dimension
Expand Down