Merged
Conversation
xiami2019
approved these changes
Feb 9, 2026
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
MOVA Video Generation Workflow
Language / 语言: English | 中文
English
1. What This Workflow Does
This workflow provides an AI-assisted end-to-end pipeline for video generation using the MOVA model. It offers two modes:
2. How to Use
Step 1: Start SGLang Server
Set the path to your MOVA checkpoint directory, then start the backend:
Ensure the server is running and accessible (default port: 30000).
Step 2: Configure
config.pyEdit
config.pyto set:base_urlfor each model (360p / 720p) to match your SGLang server address.GEMINI_API_KEY+GEMINI_API_URL: Gemini API (recommended; fill base URL when using proxy)DASHSCOPE_API_KEY+DASHSCOPE_BASE_URL: Qwen/DashScope API (base URL for region, e.g. Singapore/US)Step 3: Start Streamlit App
./launch_streamlit.sh # Or: streamlit run app.py --server.port 8500 --server.address 0.0.0.0Open the URL shown in the terminal (e.g., http://localhost:8500) and use the web interface.
Requirements
requirements.txtfor Python dependencies.File Structure
app.pyapi_utils.pyconfig.pysglang_client.pygenerate_first_frame.pyqwen_vl_api.pyprompt_rewriter_with_image.pylaunch_sglang_server.shMOVA_MODEL_PATHto your checkpoint dir)launch_streamlit.sh中文
1. 工作流简介
本工作流提供基于 MOVA 模型 的 AI 辅助端到端视频生成管道,支持两种模式:
2. 使用步骤
第一步:启动 SGLang 服务
设置 MOVA 模型 checkpoint 目录后启动后端:
确保服务已启动且可访问(默认端口:30000)。
第二步:配置
config.py编辑
config.py,设置:base_urlGEMINI_API_KEY+GEMINI_API_URL:Gemini API(推荐;使用代理时需填写 base URL)DASHSCOPE_API_KEY+DASHSCOPE_BASE_URL:通义千问 / DashScope API(base URL 可选,用于指定地域如新加坡/美国)第三步:启动 Streamlit 应用
./launch_streamlit.sh # 或:streamlit run app.py --server.port 8500 --server.address 0.0.0.0在终端显示的 URL(如 http://localhost:8500)打开浏览器即可使用。
环境要求
requirements.txt。文件结构
app.pyapi_utils.pyconfig.pysglang_client.pygenerate_first_frame.pyqwen_vl_api.pyprompt_rewriter_with_image.pylaunch_sglang_server.shMOVA_MODEL_PATH为模型目录)launch_streamlit.sh