- Python3.7
- Install all packages in requirement.txt.
pip3 install -r requirements.txtpython multi_step_retriever.py --index example_docs.jsonl
- Run train.py and specify what Transformer model you would like to fine tune:
python train.py --bert_type bert-large --check_point 1Option "--check_point 1" means that we will use the checkpoint technique during training.
The trained model (that has the best performance on the dev set) will be saved to directory output/.
- To test the performance of a trained model, run the command below:
python test_trained_model.py --bert_type bert-large- Download the model weights and extract them into the
output/nli_modelfolder:
| PolitiFact | Gossipcop | ||
|---|---|---|---|
| Sequence_length | 512 | 512 | 512 |
| Max_encoder_length | 512 | 512 | 512 |
| Min_decoder_length | 64 | 64 | 64 |
| Max_decoder_length | 128 | 128 | 128 |
| Embedding_dimension | 200 | 200 | 200 |
| k(number of paragraphs retrieved) | 30 | 30 | 30 |
| MSR | 0.3 | 0.3 | 0.3 |
| 0.9 | 0.9 | 0.9 | |
| Retrieve_steps | 2 | 3 | 3 |
| Batch_size | 64 | 64 | 32 |
| Maximum_epochs | 10 | 10 | 10 |
| Vocabulary_size | 30522 | 30522 | 21128 |
| Learning_rate | 1e-5 | 1e-5 | 1e-5 |