Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
169 changes: 155 additions & 14 deletions examples/matmul/run.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -228,19 +228,6 @@ inline KernelCode createMatmul3(const char *shaderTemplate, const size_t M,
}
}

/**
* @brief No-Op shader with matmul bindings for performance testing
*/
static const char *kShaderNoOp = R"(
@group(0) @binding(0) var<storage, read_write> A: array<{{precision}}>;
@group(0) @binding(1) var<storage, read_write> B: array<{{precision}}>;
@group(0) @binding(2) var<storage, read_write> C: array<{{precision}}>;
@compute @workgroup_size({{workgroupSize}})
fn main(
@builtin(global_invocation_id) globalID : vec3<u32>) {
}
)";

/* 2D block-tiling
*
*/
Expand Down Expand Up @@ -357,6 +344,141 @@ inline KernelCode createMatmul4(const char *shaderTemplate, const size_t M,
}
}

/* 2D block-tiling with vectorization
*
*/
static const char *kShaderMatmulWithVectorization = R"(
@group(0) @binding(0) var<storage, read_write> a: array<{{precision}}>;
@group(0) @binding(1) var<storage, read_write> b: array<{{precision}}>;
@group(0) @binding(2) var<storage, read_write> c: array<vec4<{{precision}}>>;
var<workgroup> tileA: array<{{precision}}, {{BM}} * {{BK}}>;
var<workgroup> tileB: array<{{precision}}, {{BN}} * {{BK}}>;

@compute @workgroup_size({{workgroupSize}})
fn main(
@builtin(global_invocation_id) globalID : vec3<u32>,
@builtin(local_invocation_id) localID : vec3<u32>,
@builtin(workgroup_id) groupid : vec3<u32>) {

var threadResults: array<vec4<{{precision}}>, {{TM}} * {{TN4}}>;
var localM: array<{{precision}}, {{TM}}>;
var localN: array<vec4<{{precision}}>, {{TN4}}>;

let cRow: u32 = groupid.x;
let cCol: u32 = groupid.y;
let numThread: u32 = ({{BM}} * {{BN}}) / ({{TM}} * {{TN}});

// position of the first c element computed by the thread
let threadRow: u32 = (localID.x / ({{BN}} / {{TN}})) * {{TM}};
let threadCol: u32 = (localID.x % ({{BN}} / {{TN}})) * {{TN}};

// aPtr and bPtr are the starting positions of the tiles in a and b,
// incremented in the bkidx loop.
// cPtr is the starting position of the tile in c which is fixed.

var aPtr = cRow * {{BM}} * {{K}};
var bPtr = cCol * {{BN}} * {{K}};
let cPtr = cRow * {{BM}} * {{N4}} + cCol * {{BN4}};

for (var bkidx = 0; bkidx < {{K}}; bkidx += {{BK}}) {

// Load tile
// Load BM x BK by numThread(BM * BN / (TM * TN))
// The number of iteration == BM * BK / (BM * BN / (TM * TN))
for (var idx: u32 = 0; idx < {{NUM_TILEA}}; idx++) {
tileA[localID.x + idx * numThread] = a[aPtr + ((localID.x + idx * numThread) / {{BK}}) * {{K}} + (localID.x + idx * numThread) % {{BK}}];
}
// Load BK x BN by numThread(BM * BN / (TM * TN))
// The number of iteration == BK * BN / (BM * BN / (TM * TN))
for (var idx: u32 = 0; idx < {{NUM_TILEB}}; idx++) {
tileB[localID.x + idx * numThread] = b[bPtr + ((localID.x + idx * numThread) / {{BK}}) * {{K}} + ((localID.x + idx * numThread) % {{BK}})];
}

aPtr += {{BK}};
bPtr += {{BK}};

workgroupBarrier();
// Compute tile
for (var dotIdx: u32 = 0; dotIdx < {{BK}}; dotIdx = dotIdx + 1) {
for (var idx: u32 = 0; idx < {{TM}}; idx++) {
localM[idx] = tileA[(threadRow + idx) * {{BK}} + dotIdx];
}
for (var idx: u32 = 0; idx < {{TN4}}; idx++) {
localN[idx] = vec4<{{precision}}>(tileB[(threadCol + idx*4 ) * {{BK}} + dotIdx],
tileB[(threadCol + idx*4 + 1) * {{BK}} + dotIdx],
tileB[(threadCol + idx*4 + 2) * {{BK}} + dotIdx],
tileB[(threadCol + idx*4 + 3) * {{BK}} + dotIdx]);
}
for (var resIdxM: u32 = 0; resIdxM < {{TM}}; resIdxM++) {
for (var resIdxN: u32 = 0; resIdxN < {{TN4}}; resIdxN++) {
threadResults[resIdxM * {{TN4}} + resIdxN] += localM[resIdxM] * localN[resIdxN];
}
}
}
workgroupBarrier();
}

for (var resIdxM: u32 = 0; resIdxM < {{TM}}; resIdxM++) {
for (var resIdxN: u32 = 0; resIdxN < {{TN4}}; resIdxN++) {
c[cPtr + (threadRow + resIdxM) * {{N4}} + (threadCol/4) + resIdxN] = threadResults[resIdxM * {{TN4}} + resIdxN];
}
}
}
)";

inline KernelCode createMatmulWithVectorization(const char *shaderTemplate, const size_t M,
const size_t K, const size_t N, const size_t BM,
const size_t BK, const size_t BN,
const size_t TM, const size_t TN,
const Shape &workgroupSize = {256, 1, 1},
NumType precision = kf32,
bool unrolling = false) {
assert(BM % TM == 0);
assert(BN % TN == 0);
assert(K % BK == 0);
assert(M % BM == 0);
assert(N % BN == 0);
// # threads = tile A size == tile B size == # threads for computing C
int num_threads = BM * BN / (TM * TN);
std::string codeString(shaderTemplate);
replaceAll(codeString, {{"{{workgroupSize}}", toString(workgroupSize)},
{"{{precision}}", toString(precision)},
{"{{M}}", toString(M)},
{"{{K}}", toString(K)},
{"{{N}}", toString(N)},
{"{{BM}}", toString(BM)},
{"{{BK}}", toString(BK)},
{"{{BN}}", toString(BN)},
{"{{TM}}", toString(TM)},
{"{{TN}}", toString(TN)},
{"{{NUM_TILEA}}", toString(BM * BK / num_threads)},
{"{{NUM_TILEB}}", toString(BN * BK / num_threads)},
{"{{TN4}}", toString(TN / 4)},
{"{{N4}}", toString(N / 4)},
{"{{BN4}}", toString(BN / 4)},
});
if (unrolling) {
std::string unrolledCode = loopUnrolling(codeString);
LOG(kDefLog, kInfo, "Unrolled code:\n%s", unrolledCode.c_str());
return {unrolledCode, workgroupSize};
} else {
return {codeString, workgroupSize};
}
}

/**
* @brief No-Op shader with matmul bindings for performance testing
*/
static const char *kShaderNoOp = R"(
@group(0) @binding(0) var<storage, read_write> A: array<{{precision}}>;
@group(0) @binding(1) var<storage, read_write> B: array<{{precision}}>;
@group(0) @binding(2) var<storage, read_write> C: array<{{precision}}>;
@compute @workgroup_size({{workgroupSize}})
fn main(
@builtin(global_invocation_id) globalID : vec3<u32>) {
}
)";

inline KernelCode createNoOp(const char *shaderTemplate,
const Shape &workgroupSize = {256, 1, 1},
NumType precision = kf32) {
Expand Down Expand Up @@ -448,6 +570,24 @@ Kernel selectMatmul(Context &ctx, int version,
kernel = createKernel(ctx, matmul, bindings,
/*nWorkgroups*/ nWorkgroups);
} else if (version == 7) {
static constexpr size_t BM = 64;
static constexpr size_t BK = 16;
static constexpr size_t BN = 64;
static constexpr size_t TM = BM / BK;
static constexpr size_t TN = BN / BK;
Shape wgSize = {(BM / TM) * (BN / TN), 1, 1}; // This is the same as BK * BK.
Shape nWorkgroups = {cdiv(M, BM), cdiv(N, BN), 1};
LOG(kDefLog, kInfo, "M: %d, K: %d, N: %d", M, K, N);
LOG(kDefLog, kInfo, "BM: %d, BK: %d, BN: %d, TM: %d, TN: %d", BM, BK, BN, TM, TN);
LOG(kDefLog, kInfo, "wgSize: ( %s )", toString(wgSize).c_str());
LOG(kDefLog, kInfo, "nWorkgroups: ( %s )", toString(nWorkgroups).c_str());
KernelCode matmul = createMatmulWithVectorization(kShaderMatmulWithVectorization, M, K, N, BM, BK, BN, TM, TN,
/*wgSize*/ wgSize,
kf32,
/*Loop unrolling*/ true);
kernel = createKernel(ctx, matmul, bindings,
/*nWorkgroups*/ nWorkgroups);
} else if (version == 8) {
Shape wgSize = {256, 1, 1};
Shape nWorkgroups = cdiv({M, N, 1}, {16, 16, 1});
KernelCode matmul = createNoOp(kShaderNoOp, /*wgsize*/ wgSize);
Expand Down Expand Up @@ -528,7 +668,8 @@ int main() {
// 4 == 2D blocktiling
// 5 == 1D blocktiling with loop unrolling
// 6 == 2D blocktiling with loop unrolling
// 7 == No-Op
// 7 == 2D blocktiling with loop unrolling and vectorization
// 8 == No-Op

size_t M, K, N; // Matrix dimensions
static constexpr int kTestSize = 2;
Expand Down