@@ -1095,24 +1095,85 @@ def str_pad(arr, width, side='left', fillchar=' '):
10951095
10961096def str_split (arr , pat = None , n = None ):
10971097 """
1098- Split each string (a la re.split) in the Series/Index by given
1099- pattern, propagating NA values. Equivalent to :meth:`str.split`.
1098+ Split strings around given separator/delimiter.
1099+
1100+ Split each string in the caller's values by given
1101+ pattern, propagating NaN values. Equivalent to :meth:`str.split`.
11001102
11011103 Parameters
11021104 ----------
1103- pat : string, default None
1104- String or regular expression to split on. If None, splits on whitespace
1105+ pat : str, optional
1106+ String or regular expression to split on.
1107+ If `None`, split on whitespace.
11051108 n : int, default -1 (all)
1106- None, 0 and -1 will be interpreted as return all splits
1109+ Limit number of splits in output.
1110+ `None`, 0 and -1 will be interpreted as return all splits.
11071111 expand : bool, default False
1108- * If True, return DataFrame/MultiIndex expanding dimensionality.
1109- * If False, return Series/Index.
1112+ Expand the splitted strings into separate columns.
11101113
1111- return_type : deprecated, use `expand`
1114+ * If `True`, return DataFrame/MultiIndex expanding dimensionality.
1115+ * If `False`, return Series/Index, containing lists of strings.
11121116
11131117 Returns
11141118 -------
1119+ Type matches caller unless `expand=True` (return type is `DataFrame` or
1120+ `MultiIndex`)
11151121 split : Series/Index or DataFrame/MultiIndex of objects
1122+
1123+ Notes
1124+ -----
1125+ - If n >= default splits, makes all splits
1126+ - If n < default splits, makes first n splits only
1127+ - Appends `None` for padding if `expand=True`
1128+
1129+ Examples
1130+ --------
1131+ >>> s = pd.Series(["this is good text", "but this is even better"])
1132+
1133+ By default, split will return an object of the same size
1134+ having lists containing the split elements
1135+
1136+ >>> s.str.split()
1137+ 0 [this, is, good, text]
1138+ 1 [but, this, is, even, better]
1139+ dtype: object
1140+ >>> s.str.split("random")
1141+ 0 [this is good text]
1142+ 1 [but this is even better]
1143+ dtype: object
1144+
1145+ When using `expand=True`, the split elements will
1146+ expand out into separate columns.
1147+
1148+ >>> s.str.split(expand=True)
1149+ 0 1 2 3 4
1150+ 0 this is good text None
1151+ 1 but this is even better
1152+ >>> s.str.split(" is ", expand=True)
1153+ 0 1
1154+ 0 this good text
1155+ 1 but this even better
1156+
1157+ Parameter `n` can be used to limit the number of splits in the output.
1158+
1159+ >>> s.str.split("is", n=1)
1160+ 0 [th, is good text]
1161+ 1 [but th, is even better]
1162+ dtype: object
1163+ >>> s.str.split("is", n=1, expand=True)
1164+ 0 1
1165+ 0 th is good text
1166+ 1 but th is even better
1167+
1168+ If NaN is present, it is propagated throughout the columns
1169+ during the split.
1170+
1171+ >>> s = pd.Series(["this is good text", "but this is even better", np.nan])
1172+ >>> s.str.split(n=3, expand=True)
1173+ 0 1 2 3
1174+ 0 this is good text
1175+ 1 but this is even better
1176+ 2 NaN NaN NaN NaN
11161177 """
11171178 if pat is None :
11181179 if n is None or n == 0 :
0 commit comments